© Полимерная индустрия

Нулевая налоговая и бухгалтерская отчетность

Полезная информация







Анализ сайта он лайн



Основные классы антипиренов

Существует много различных видов антипиренов, при выборе которых исходят из требований, предъявляемых к материалу конкретного назначения. При этом должны быть учтены не только требования к эксплуатационным характеристикам, но и технологическим параметрам его получения и переработки в изделия.

Существуют несколько механизмов замедления процессов горения с помощью антипиренов:

1. Ингибирование свободнорадикальных процессов, происходящих при разложении полимера, вследствие образования веществ, способных взаимодействовать со свободными радикалами с образованием радикалов с меньшей реакционной способностью.

Замедлению горения способствует введение веществ, содержащих галогены (хлор, бром, фтор, йод), азот, фосфор и бор. Ингибирование процесса горения в данном случае связано с протеканием реакций гибели активных центров – атомов водорода, кислорода и гидроксильных радикалов:

Н· + НХ  =  Н2 + Х·

Н· + Х· + М  =   НХ + М

·ОН + НХ   =  Н2О + Х·

Здесь Х – атом галогена.
Для однотипных соединений эффективность галогенсодержащих антипиренов убывает в ряду J > Br > Cl > F. Наибольшее практическое применение находят бром- и хлорсодержащие антипирены. Наибольшей эффективностью обладают соединения с пониженной энергией связи углерод – галоген. Таковыми являются галогенсодержащие алифатические соединения. Чаще всего используют хлорированный парафин, содержащий до 70 % связанного хлора. Реже применяют ароматические хлор или бром содержащие соединения, например, декабромдифенилоксид, тетрахлорфталиевый ангидрид. Ароматические соединения более устойчивы и поэтому в меньшей степени снижают горючесть, но благодаря этому они оказывают меньшее деструктирующее влияние на полимерную композицию.

Одним из эффективных ингибиторов процессов горения и тления различных полимеров считаются органические соединения фосфора, действие которых объясняется следующим способом. При пиролизе полимеров, содержащих соединения фосфора происходит образование фосфорной кислоты и ее ангидридов, которые катализируют дегидратацию и дегидрирование, способствуют процессу карбонизации. Продукты пиролиза соединений фосфора ингибируют реакции в газовой фазе за счет дезактивации активных радикалов в пламени.

2. Образование защитного слоя на поверхности полимера, непроницаемого для кислорода или изолирующего от дальнейшего нагревания.

Механизм действия целого ряда антипиренов (силикаты и алюмосиликаты, бораты металлов, фосфаты, их органические производные) обусловлен преобладающим влиянием на процесс горения образующихся на поверхности защитных слоев. Эти слои состоят из нелетучих остатков (главным образом – окислов металлов), образующихся при разложении неорганических соединений. Антипирены, которые способны создавать плотные поверхностные защитные слои, создают своего рода физический барьер действию пламени на полимер, затрудняют диффузию горючих газов в пламя. К таким антипиренам относятся метаборат бария (ВаВ2О4·Н2О), борат цинка, тетрафторборат аммония.

Так полифосфорные кислоты и ангидриты, образующиеся при горении полимеров, содержащих соединения фосфора, снижают кислородопроницаемость пенококса, образующегося на поверхности горящего полимера, и тем самым замедляют горение. Примерами таких антипиренов являются диаммонийфосфат, магнийортофосфат и др.

3. Выделение негорючих (инертных) газов, препятствующих подводу кислорода в зону горения.

При применении в качестве антипиренов неорганических галогенов замедление горения полимеров может происходить по следующему механизму. NH4Cl или NH4Br при температурах выше 200 и 250 °С соответственно разлагаются на аммиак, HCl и HBr. Газообразные HCl и HBr подавляют горение. Кроме этого, уменьшается процентное содержание кислорода в газовой фазе, что также замедляет горение.

4. Разложение антипиренов или взаимодействие антипиренов и продуктов их деструкци с другими веществами с поглощением тепла, что способствует уменьшению температуры ниже точки воспламенения.

Большую группу веществ, применяемых в качестве антипиренов, составляют вещества, эндотермически разлагающиеся с образованием негорючих продуктов. Сюда можно отнести гидроокиси алюминия, магния, цинка, гидратированные карбонаты металлов, мочевину, дициандиамид и многие другие вещества. Механизм действия таких антипиренов связан с чисто физическим влиянием на тепловой баланс процесса горения. На разложение антипирена, испарение продуктов затрачивается тепло. В результате понижается температура конденсированной фазы. Негорючие продукты, в свою очередь, разбавляют топливо в пламенной зоне реакции, снижают температуру пламени и тем самым уменьшают обратный тепловой поток на поверхность горючего материала. В целом наблюдается замедление процесса горения.

Одним из таких наиболее важных и сравнительно дешевых антипиренов является тригидрат оксида алюминия (гиббсит) Al(OН)3 . Он обладает малой удельной поверхностью и размером частиц от 45 мкм для грубодисперсных сортов, до 1 мкм и менее – у тонкодисперсных сортов. Его эффективность обусловлена отводом тепла (1,41 кДж/г) из зоны горения вследствие интенсивного выделения при 230 °С связанной воды (34,6 %). Эта температура близка к температуре воспламенения многих органических веществ. Для существенного повышения огнестойкости полимеров необходимо использовать довольно высокие степени наполнения (от 20 до 250 частей гидроксида алюминия на 100 частей полимера в зависимости от его вида). Это приводит к повышению хрупкости ПКМ, что является главным недостатком этого антипирена.

5. Предотвращение распространения пламени в процессе горения, вследствие дополнительных затрат тепловой энергии на нагревание порошкообразного наполнителя и уменьшения температуры ниже критической точки.

Введение негорючих наполнителей в полимеры позволяет снизить содержание горючей составляющей материала, повлиять на теплофизические характеристики последнего и на условия тепло- и массообмена при горении. Для этой цели кроме дисперсных наполнителей (мел, песок) могут применять и волокнистые (стеклянные волокна, асбест). Обычно для снижения горючести материала наполнители вводят в большом количестве (> 20 мас. %).

Следует отметить, что на самом деле механизм действия антипиренов не сводится к какому-либо одному эффекту, а является более сложным.

Одним из наиболее эффективных антипиренов является оксид сурьмы, используемый в количестве 1 – 15 мас. %. Sb2O3 – кристаллический минеральный порошок белого цвета. Он характеризуется высокой плотностью (5,3 – 5,8 г/см3), размером частиц 0,8 – 2,5 мкм и масляным числом 9 – 12 см3/100г. Его вводят в полимеры в количестве 1 – 15 мас. %.

В некоторых случаях одновременное присутствие в композиции двух или более веществ, препятствующих образованию пламени, способствует достижению значительно большего эффекта по сравнению с эффектами, наблюдаемыми при использовании тех же веществ раздельно. Сверхаддитивное совместное действие двух веществ называется синергизмом.

Самым эффективным антипиреном в настоящее время является оксид сурьмы в сочетании с галогенсодержащими органическими соединениями (оптимальное мольное соотношение Sb : Cl = 1 : 3). Эта смесь обладает синергическим эффектом. Предположительный механизм действия этой смеси следующий. Выделяющийся при горении полимера из гологеноорганического соединения хлористый водород взаимодействует с оксидом сурьмы с образованием оксихлорида сурьмы, который, в свою очередь, может разлагаться с выделением трихлорида сурьмы:

Sb2O3 + 2HCl   =  2SbOCl + H2O  

5SbOCl   =       Sb4O5Cl2 + SbCl3   (при 245-280°С)

4Sb4O5Cl =   5Sb3O4Cl + SbCl3   (при 410-475°С)

3Sb3O4Cl    =    4Sb2O3 + SbCl3    (при 475-565°С)

Образующийся на конечной стадии оксид сурьмы, являясь порошкообразным наполнителем, вносит свой вклад в замедление горения, создавая дополнительные препятствия для распространения пламени. Газообразный трихлорид сурьмы, в свою очередь, ограничивает подвод кислорода в зону горения. Образование различных соединений при этом сопровождается эндотермическим эффектом, что отнимает энергию от зоны горения и замедляет его.

Опубликовано в Полимерные композиты с пониженной горючестью